Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Polymeric hexa-µ-nicotinatotricadmium(II) tetrahydrate

Hong-Ji Chen

Department of Chemistry, Jinan University, Guangzhou 510632, People's Republic of China Correspondence e-mail: hjchen2001@yahoo.com

Received 8 July 2003 Accepted 28 July 2003 Online 16 August 2003

The title polymeric complex, poly[tetraaquatricadmium(II)hexa- μ -nicotinato], [Cd₃(C₆H₄NO₂)₆(H₂O)₄]_n, exhibits two types of metal centers, *i.e.* a seven-coordinated Cd atom and a six-coordinated Cd atom located on an inversion center. The seven-coordinated Cd atoms are linked by $\kappa^3 N:O,O'$ -nicotinate bridges into one-dimensional chains that are further linked by $\kappa^2 N,O$ -nicotinate–Cd2– $\kappa^2 N,O$ -nicotinate bridges into a two-dimensional network which is parallel to the *xy* plane and which contains large 24- and 36-membered rings.

Comment

In recent years, the *m*-pyridinecarboxylate (nicotinate) group has been used as a bi/tridentate ligand to build coordination polymers for exploring non-linear optical and magnetic materials (Lin *et al.*, 2000; Chen *et al.*, 2001; Evans & Lin, 2001). In these reported coordination polymers, the metal atoms exhibit different types of coordination geometry, *viz.* pentagonal bipyramidal in poly[aquacadmium-bis(η -nicotinato)] (Clegg *et al.*, 1995), octahedral in poly[manganese-bis(η nicotinato)] (Wang *et al.*, 2002) and distorted square pyramidal in two three-dimensional coordination polymers built from a nicotinate group and binuclear copper(II)/cadmium(II), namely poly[copper(II)/cadmium(II)-bis(η -nicotinato)] (Lu & Babb, 2001; Lu & Kohler, 2002). Only one type of metal center is found in all of the coordination polymers mentioned above.

In this work, we report a new two-dimensional Cd^{II} coordination polymer, *viz*. poly[tetraaquatricadmium(II)-hexa- μ nicotinato], (I), featuring a binuclear Cd^{II} unit with both seven- and six-coordination geometries. The seven-coordinated Cd1 atom in (I) occupies a very distorted pentagonal bipyramidal coordination environment. Four O atoms of two nicotinate groups [Cd1-O1 = 2.348 (4) Å, Cd1-O2 = 2.539 (5) Å, Cd1-O3ⁱ = 2.483 (4) Å and Cd1-O4ⁱ = 2.367 (4) Å; symmetry code: (i) x, 1 + y, z; Fig. 1 and Table 1] and a nicotinate N atom [Cd1-N2 = 2.396 (4) Å] are located at the equatorial positions, and an O atom of a coordinated water molecule [Cd1-O1W = 2.292 (4) Å] and an N atom of another nicotinate group [Cd1-N3ⁱⁱ = 2.422 (4) Å; symmetry code: (ii) 1 - x, -y, 1 - z] are at the apical positions. At the equatorial positions, the coordinating O and N atoms are almost coplanar, and atom Cd1 is 0.288 Å above the plane; however, the alignment of the N and O atoms at the

apical positions deviates from 180° [N3ⁱⁱ-Cd1-O1W = $163.72 (13)^{\circ}$]. On the other hand, the coordination environment of atom Cd2, located on an inversion centre, is distorted octahedral. Atom Cd2 is coordinated by two N atoms from two nicotinate groups [Cd2-N1 = 2.325 (5) Å] and two O atoms from another two nicotinate groups [Cd2-O5 = 2.268 (4) Å] at the equatorial positions, and by two water molecules [Cd2-O2W = 2.377 (4) Å] at the apical positions.

Figure 1

The coordination environment in (I), showing displacement ellipsoids at the 30% probability level. [Symmetry codes: (i) x, 1 + y, z; (ii) 1 - x, -y, 1 - z; (vi) -x, -1 - y, 1 - z.]

Figure 2

A view of the three-dimensional framework of (I). The nicotinate groups are represented by Y-shaped sticks for clarity.

Adjacent Cd1 ions are connected by $\kappa^3 N:OO'$ -nicotinate bridges, thus forming infinite one-dimensional chains. These chains are linked by $\kappa^2 N$, *O*-nicotinate–Cd2– $\kappa^2 N$, *O*-nicotinate bridges into two-dimensional zigzag sheets. In these sheets, large 36-membered rings, with $ca 17.82 \times 8.20$ Å internal dimensions, are formed. Two zigzag sheets are then connected by common Cd1 atoms via covalent bonds, thus forming double-layered sheets containing 24-membered rings (Fig. 2). The 36- and 24-membered rings in (I) are larger than the 24and eight-membered rings in poly[copper(II)/cadmium(II)bis(η -nicotinato)] (Lu & Babb, 2001; Lu & Kohler, 2002). Finally, the two-dimensional double-layered sheets are further linked by hydrogen bonds between O atoms from both lattice water molecules and the coordinated nicotinate groups into a three-dimensional network (see Table 2 for details).

Experimental

An aqueous solution (9 ml) of Cd(NO₃)₂ (0.5 mmol) and nicotinic acid (1.0 mmol) was placed in a Teflon-lined stainless steel Parr vessel (23 ml). The pH of the solution was adjusted to \sim 8.0 with an aqueous solution (0.2 M) of sodium hydrate. The vessel was sealed, heated at 423 K for 24 h, cooled at a rate of 5 K h⁻¹ to 353 K, maintained at this temperature for 10 h and then cooled slowly to room temperature. Pale yellow crystals suitable for X-ray diffraction were obtained [yield 39% based on Cd(NO₃)₂]. Analysis calculated for C₃₆H₃₂-Cd₃N₆O₁₆: C 37.87, H 2.82, N 7.36%; found: C 37.93, H 2.91, N 7.19%. IR (cm^{-1}) : 3265 (s), 1611 (s), 1566 (s), 1387 (vs), 1050 (m), 842 (m), 765 (m), 699 (m).

 $D_{\rm r} = 1.955 {\rm Mg m}^{-3}$

Cell parameters from 25 reflections

 $0.32 \times 0.30 \times 0.26 \text{ mm}$

Mo $K\alpha$ radiation

 $\mu = 1.71 \text{ mm}^{-1}$ T = 293 (2) K

 $R_{\rm int} = 0.100$ $\theta_{\rm max} = 28.0^{\circ}$

 $h = 0 \rightarrow 14$

 $k = 0 \rightarrow 10$

 $l = -26 \rightarrow 26$

2 standard reflections

every 200 reflections

intensity decay: none

Crystal data

$[Cd_3(C_6H_4NO_2)_6(H_2O)_4]$	$D_x = 1.955 \text{ M}_2$
$M_r = 1141.88$	Mo $K\alpha$ radiat
Monoclinic, $P2_1/n$	Cell paramete
a = 11.825 (11) Å	reflections
b = 8.195 (8) Å	$\theta = 6.5 - 15.0^{\circ}$
c = 20.097 (11) Å	$\mu = 1.71 \text{ mm}^-$
$\beta = 95.160 \ (3)^{\circ}$	T = 293 (2) K
$V = 1940 (3) \text{ Å}^3$	Prism, yellow
Z = 2	$0.32 \times 0.30 \times$

Data collection

Siemens R3m diffractometer ω scans Absorption correction: ψ scan (Kopfman & Huber, 1968) $T_{\min} = 0.569, T_{\max} = 0.641$ 4705 measured reflections 4489 independent reflections 4063 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0881P)^2$
$R[F^2 > 2\sigma(F^2)] = 0.049$	+ 3.6257P]
$wR(F^2) = 0.135$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.09	$(\Delta/\sigma)_{\rm max} < 0.001$
4489 reflections	$\Delta \rho_{\rm max} = 2.63 \ {\rm e} \ {\rm \AA}^{-3}$
278 parameters	$\Delta \rho_{\rm min} = -1.05 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

H atoms of the nicotinate group were placed in calculated positions, with fixed isotropic displacement parameters, and were allowed to ride on their respective parent atoms.

Data collection: SHELXTL-Plus (Siemens, 1990); cell refinement: SHELXTL-Plus; data reduction: SHELXTL-Plus; program(s) used

Table 1

Selected geometric parameters (Å, °).

N1-Cd2 N2-Cd1 O1-Cd1 O2-Cd1	2.325 (5) 2.396 (4) 2.348 (4) 2.539 (5)	$\begin{array}{c} O1W-Cd1\\ O2W-Cd2\\ Cd1-O4^{i}\\ Cd1-N3^{ii} \end{array}$	2.292 (4) 2.377 (4) 2.367 (4) 2.422 (4)
O5-Cd2	2.269 (4)	Cd1-O3 ⁱ	2.483 (4)
O1W-Cd1-O1	104.77 (14)	O4 ⁱ -Cd1-O3 ⁱ	54.29 (11)
O1W-Cd1-O4 ⁱ	95.16 (13)	N2-Cd1-O3 ⁱ	91.71 (13)
$O1-Cd1-O4^{i}$	128.46 (13)	N3 ⁱⁱ -Cd1-O3 ⁱ	80.14 (13)
O1W-Cd1-N2	84.47 (13)	O1W-Cd1-O2	81.87 (13)
O1-Cd1-N2	83.92 (14)	O1-Cd1-O2	53.33 (13)
O4 ⁱ -Cd1-N2	145.90 (12)	O4 ⁱ -Cd1-O2	84.28 (11)
O1W-Cd1-N3 ⁱⁱ	163.72 (13)	N2-Cd1-O2	129.07 (13)
O1-Cd1-N3 ⁱⁱ	87.28 (14)	N3 ⁱⁱ -Cd1-O2	114.34 (14)
O4 ⁱ -Cd1-N3 ⁱⁱ	85.41 (13)	O3 ⁱ -Cd1-O2	135.87 (11)
N2-Cd1-N3 ⁱⁱ	86.00 (14)	O5-Cd2-N1	88.46 (14)
O1W-Cd1-O3 ⁱ	86.97 (13)	O5-Cd2-O2W	91.58 (13)
$O1-Cd1-O3^{i}$	166.95 (12)	N1-Cd2-O2W	101.49 (13)

Symmetry codes: (i) x, 1 + y, z; (ii) 1 - x, -y, 1 - z.

Table 2 Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1W-H1WA\cdots O4^{iii}$	0.85	1.92	2.751 (5)	165
$O2W - H2WA \cdots O6$	0.85	1.94	2.677 (6)	145
$O1W - H1WB \cdots O2W^{iv}$	0.89	2.01	2.847 (5)	154
$O2W - H2WB \cdots O2^{v}$	0.82	1.93	2.712 (6)	158

Symmetry codes: (iii) $\frac{1}{2} - x$, $\frac{1}{2} + y$, $\frac{3}{2} - z$; (iv) $\frac{1}{2} + x$, $-\frac{1}{2} - y$, $\frac{1}{2} + z$; (v) -x, -y, 1 - z.

to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus.

This work was supported by the Natural Science Foundation of Overseas Chinese Affairs Office of the State Council, People's Republic of China. The authors thank Professor Xiao-Ming Chen, School of Chemistry and Chemical Engineering, Zhongshan University, Guangzhou, People's Reublic of China, for help with the X-ray structural analysis.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1659). Services for accessing these data are described at the back of the journal.

References

- Chen, H.-J., Mao, Z.-W., Gao, S. & Chen, X.-M. (2001). Chem. Commun. pp. 2320-2321.
- Clegg, W., Cressey, J. T., McCamley, A. & Straughan, B. P. (1995). Acta Cryst. C51, 234-235.
- Evans, O. R. & Lin, W. (2001). Chem. Mater. 13, 3009-3017.
- Kopfman, G. & Huber, R. (1968). Acta Cryst. A24, 348-351.
- Lin, W., Chapman, M. E., Wang, Z. & Yee, G. T. (2000). Inorg. Chem. 39, 4169-4173.
- Lu, J. Y. & Babb, A. M. (2001). Inorg. Chem. Commun. pp. 716-718.
- Lu, J. Y. & Kohler, E. E. (2002). Inorg. Chem. Commun. pp. 196-198.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Siemens (1990). SHELXTL-Plus User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Wang, W., Ma, C., Zhang, X., Chen, C., Liu, Q., Chen, F., Liao, D. & Li, L. (2002). Bull. Chem. Soc. Jpn, 75, 2609-2614.