Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Polymeric hexa- μ-nicotinatotricadmium(II) tetrahydrate

Hong-Ji Chen

Department of Chemistry, Jinan University, Guangzhou 510632,
People's Republic of China
Correspondence e-mail: hjchen2001@yahoo.com

Received 8 July 2003
Accepted 28 July 2003
Online 16 August 2003
The title polymeric complex, poly[tetraaquatricadmium(II)-hexa- μ-nicotinato], $\left[\mathrm{Cd}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]_{n}$, exhibits two types of metal centers, i.e. a seven-coordinated Cd atom and a six-coordinated Cd atom located on an inversion center. The seven-coordinated Cd atoms are linked by $\kappa^{3} N: O, O^{\prime}$-nicotinate bridges into one-dimensional chains that are further linked by $\kappa^{2} N, O$-nicotinate- $\mathrm{Cd} 2-\kappa^{2} N, O$-nicotinate bridges into a two-dimensional network which is parallel to the $x y$ plane and which contains large 24 - and 36 -membered rings.

Comment

In recent years, the m-pyridinecarboxylate (nicotinate) group has been used as a bi/tridentate ligand to build coordination polymers for exploring non-linear optical and magnetic materials (Lin et al., 2000; Chen et al., 2001; Evans \& Lin, 2001). In these reported coordination polymers, the metal atoms exhibit different types of coordination geometry, viz. pentagonal bipyramidal in poly[aquacadmium-bis (η-nicotinato)] (Clegg et al., 1995), octahedral in poly[manganese-bis (η nicotinato)] (Wang et al., 2002) and distorted square pyramidal in two three-dimensional coordination polymers built from a nicotinate group and binuclear copper(II)/cadmium(II), namely poly[copper(II)/cadmium(II)-bis(η-nicotinato)] (Lu \& Babb, 2001; Lu \& Kohler, 2002). Only one type of metal center is found in all of the coordination polymers mentioned above.

In this work, we report a new two-dimensional $\mathrm{Cd}^{\mathrm{II}}$ coordination polymer, $v i z$. poly[tetraaquatricadmium(II)-hexa- μ nicotinato], (I), featuring a binuclear $\mathrm{Cd}^{\mathrm{II}}$ unit with both seven- and six-coordination geometries. The seven-coordinated Cd1 atom in (I) occupies a very distorted pentagonal bipyramidal coordination environment. Four O atoms of two nicotinate groups $[\mathrm{Cd} 1-\mathrm{O} 1=2.348(4) \AA, \quad \mathrm{Cd} 1-\mathrm{O} 2=$ $2.539(5) \AA, \quad \mathrm{Cd} 1-\mathrm{O} 3^{\mathrm{i}}=2.483(4) \AA$ and $\mathrm{Cd} 1-\mathrm{O} 4^{\mathrm{i}}=$ 2.367 (4) Å; symmetry code: (i) $x, 1+y, z$; Fig. 1 and Table 1] and a nicotinate N atom $[\mathrm{Cd} 1-\mathrm{N} 2=2.396(4) \AA]$ are located at the equatorial positions, and an O atom of a coordinated water molecule [Cd1-O1W = 2.292 (4) \AA] and an N atom of another nicotinate group $\left[\mathrm{Cd} 1-\mathrm{N} 3^{\mathrm{ii}}=2.422\right.$ (4) \AA; symmetry
code: (ii) $1-x,-y, 1-z]$ are at the apical positions. At the equatorial positions, the coordinating O and N atoms are almost coplanar, and atom Cd1 is $0.288 \AA$ above the plane; however, the alignment of the N and O atoms at the

(I)
apical positions deviates from 180° [$\mathrm{N} 3{ }^{\mathrm{ii}}-\mathrm{Cd} 1-\mathrm{O} 1 W=$ $\left.163.72(13)^{\circ}\right]$. On the other hand, the coordination environment of atom Cd2, located on an inversion centre, is distorted octahedral. Atom Cd 2 is coordinated by two N atoms from two nicotinate groups $[\mathrm{Cd} 2-\mathrm{N} 1=2.325(5) \AA$] and two O atoms from another two nicotinate groups $[\mathrm{Cd} 2-\mathrm{O} 5=$ 2.268 (4) \AA] at the equatorial positions, and by two water molecules [Cd2-O2W $=2.377$ (4) \AA] at the apical positions.

Figure 1
The coordination environment in (I), showing displacement ellipsoids at the 30% probability level. [Symmetry codes: (i) $x, 1+y, z$; (ii) $1-x,-y$, $1-z$; (vi) $-x,-1-y, 1-z$.]

Figure 2
A view of the three-dimensional framework of (I). The nicotinate groups are represented by Y-shaped sticks for clarity.

Adjacent Cd 1 ions are connected by $\kappa^{3} N: O O^{\prime}$-nicotinate bridges, thus forming infinite one-dimensional chains. These chains are linked by $\kappa^{2} N, O$-nicotinate- $\mathrm{Cd} 2-\kappa^{2} N, O$-nicotinate bridges into two-dimensional zigzag sheets. In these sheets, large 36 -membered rings, with ca $17.82 \times 8.20 \AA$ internal dimensions, are formed. Two zigzag sheets are then connected by common Cd1 atoms via covalent bonds, thus forming double-layered sheets containing 24 -membered rings (Fig. 2). The 36- and 24-membered rings in (I) are larger than the 24and eight-membered rings in poly[copper(II)/cadmium(II)-$\operatorname{bis}(\eta$-nicotinato)] (Lu \& Babb, 2001; Lu \& Kohler, 2002). Finally, the two-dimensional double-layered sheets are further linked by hydrogen bonds between O atoms from both lattice water molecules and the coordinated nicotinate groups into a three-dimensional network (see Table 2 for details).

Experimental

An aqueous solution $(9 \mathrm{ml})$ of $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2}(0.5 \mathrm{mmol})$ and nicotinic acid (1.0 mmol) was placed in a Teflon-lined stainless steel Parr vessel (23 ml). The pH of the solution was adjusted to ~ 8.0 with an aqueous solution $(0.2 M)$ of sodium hydrate. The vessel was sealed, heated at 423 K for 24 h , cooled at a rate of $5 \mathrm{~K} \mathrm{~h}^{-1}$ to 353 K , maintained at this temperature for 10 h and then cooled slowly to room temperature. Pale yellow crystals suitable for X-ray diffraction were obtained [yield 39% based on $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2}$]. Analysis calculated for $\mathrm{C}_{36} \mathrm{H}_{32}-$ $\mathrm{Cd}_{3} \mathrm{~N}_{6} \mathrm{O}_{16}$: C 37.87, H $2.82, \mathrm{~N} 7.36 \%$; found: C 37.93, H 2.91 , N 7.19%. IR (cm^{-1}): $3265(s), 1611(s), 1566(s), 1387(v s), 1050(m), 842(m)$, 765 (m), 699 (m).

Crystal data

$\left[\mathrm{Cd}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$
$M_{r}=1141.88$
Monoclinic, $P 2_{1} / n$
$a=11.825$ (11) £
$b=8.195$ (8) \AA 。
$c=20.097(11) \AA$
$\beta=95.160(3){ }^{\circ}$
$V=1940(3) \AA^{3}$
$Z=2$
$D_{x}=1.955 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25
\quad reflections
$\theta=6.5-15.0^{\circ}$
$\mu=1.71 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Prism, yellow
$0.32 \times 0.30 \times 0.26 \mathrm{~mm}$

Data collection

Siemens R3m diffractometer
ω scans
Absorption correction: ψ scan
(Kopfman \& Huber, 1968)
$T_{\text {min }}=0.569, T_{\text {max }}=0.641$
4705 measured reflections
4489 independent reflections
4063 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.100 \\
& \theta_{\max }=28.0^{\circ} \\
& h=0 \rightarrow 14 \\
& k=0 \rightarrow 10 \\
& l=-26 \rightarrow 26 \\
& 2 \text { standard reflections } \\
& \quad \text { every } 200 \text { reflections } \\
& \quad \text { intensity decay: none }
\end{aligned}
$$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}^{2}\right)+(0.0881 P)^{2} \\
&+3.6257 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }= 2.63 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.05 \mathrm{e}^{-3}
\end{aligned}
$$

$w R\left(F^{2}\right)=0.135$
$S=1.09$
4489 reflections
278 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$\mathrm{N} 1-\mathrm{Cd} 2$	$2.325(5)$	$\mathrm{O} 1 W-\mathrm{Cd} 1$	$2.292(4)$
$\mathrm{N} 2-\mathrm{Cd} 1$	$2.396(4)$	$\mathrm{O} 2 W-\mathrm{Cd} 2$	$2.377(4)$
$\mathrm{O} 1-\mathrm{Cd} 1$	$2.348(4)$	$\mathrm{Cd} 1-\mathrm{O} 4^{\mathrm{i}}$	$2.367(4)$
$\mathrm{O} 2-\mathrm{Cd} 1$	$2.539(5)$	$\mathrm{Cd} 1-\mathrm{N} 3^{\mathrm{ii}}$	$2.422(4)$
$\mathrm{O} 5-\mathrm{Cd} 2$	$2.269(4)$	$\mathrm{Cd} 1-\mathrm{O} 3^{\mathrm{i}}$	$2.483(4)$
$\mathrm{O} 1 W-\mathrm{Cd} 1-\mathrm{O} 1$	$104.77(14)$	$\mathrm{O}^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 3^{\mathrm{i}}$	$54.29(11)$
$\mathrm{O} 1 W-\mathrm{Cd} 1-\mathrm{O}^{\mathrm{i}}$	$95.16(13)$	$\mathrm{N} 2-\mathrm{Cd} 1-\mathrm{O} 3^{\mathrm{i}}$	$91.71(13)$
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 4^{\mathrm{i}}$	$128.46(13)$	$\mathrm{N} 3^{\mathrm{ii}}-\mathrm{Cd} 1-\mathrm{O} 3^{\mathrm{i}}$	$80.14(13)$
$\mathrm{O} 1 W-\mathrm{Cd} 1-\mathrm{N} 2$	$84.47(13)$	$\mathrm{O} 1 W-\mathrm{Cd} 1-\mathrm{O} 2$	$81.87(13)$
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{N} 2$	$83.92(14)$	$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 2$	$53.33(13)$
$\mathrm{O} 4^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{N} 2$	$145.90(12)$	$\mathrm{O} 4^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 2$	$84.28(11)$
$\mathrm{O} 1 W-\mathrm{Cd} 1-\mathrm{N} 3^{\mathrm{ii}}$	$163.72(13)$	$\mathrm{N} 2-\mathrm{Cd} 1-\mathrm{O} 2$	$129.07(13)$
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{N} 3^{\mathrm{ii}}$	$87.28(14)$	$\mathrm{N} 3^{\mathrm{ii}}-\mathrm{Cd} 1-\mathrm{O} 2$	$114.34(14)$
$\mathrm{O} 4^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{N} 3^{\mathrm{ii}}$	$85.41(13)$	$\mathrm{O} 3^{i}-\mathrm{Cd} 1-\mathrm{O} 2$	$135.87(11)$
$\mathrm{N} 2-\mathrm{Cd} 1-\mathrm{N} 3^{\mathrm{ii}}$	$86.00(14)$	$\mathrm{O} 5-\mathrm{Cd} 2-\mathrm{N} 1$	$88.46(14)$
$\mathrm{O} 1 W-\mathrm{Cd} 1-\mathrm{O}^{\mathrm{i}}$	$86.97(13)$	$\mathrm{O} 5-\mathrm{Cd} 2-\mathrm{O} 2 W$	$91.58(13)$
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O}^{\mathrm{i}}$	$166.95(12)$	$\mathrm{N} 1-\mathrm{Cd} 2-\mathrm{O} 2 W$	$101.49(13)$

Symmetry codes: (i) $x, 1+y, z$; (ii) $1-x,-y, 1-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 1 W A \cdots \mathrm{O} 4^{\text {iii }}$	0.85	1.92	2.751 (5)	165
$\mathrm{O} 2 W-\mathrm{H} 2 W A \cdots \mathrm{O} 6$	0.85	1.94	2.677 (6)	145
$\mathrm{O} 1 W-\mathrm{H} 1 W B \cdots \mathrm{O} 2 W^{\text {iv }}$	0.89	2.01	2.847 (5)	154
$\mathrm{O} 2 W-\mathrm{H} 2 W B \cdots \mathrm{O} 2^{\text {v }}$	0.82	1.93	2.712 (6)	158

Symmetry codes: (iii) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{3}{2}-z$; (iv) $\frac{1}{2}+x,-\frac{1}{2}-y, \frac{1}{2}+z$; (v) $-x,-y, 1-z$.
to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus.

This work was supported by the Natural Science Foundation of Overseas Chinese Affairs Office of the State Council, People's Republic of China. The authors thank Professor Xiao-Ming Chen, School of Chemistry and Chemical Engineering, Zhongshan University, Guangzhou, People's Reublic of China, for help with the X-ray structural analysis.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1659). Services for accessing these data are described at the back of the journal.

References

Chen, H.-J., Mao, Z.-W., Gao, S. \& Chen, X.-M. (2001). Chem. Commun. pp. 2320-2321.
Clegg, W., Cressey, J. T., McCamley, A. \& Straughan, B. P. (1995). Acta Cryst. C51, 234-235.
Evans, O. R. \& Lin, W. (2001). Chem. Mater. 13, 3009-3017.
Kopfman, G. \& Huber, R. (1968). Acta Cryst. A24, 348-351.
Lin, W., Chapman, M. E., Wang, Z. \& Yee, G. T. (2000). Inorg. Chem. 39, 41694173.

Lu, J. Y. \& Babb, A. M. (2001). Inorg. Chem. Commun. pp. 716-718.
Lu, J. Y. \& Kohler, E. E. (2002). Inorg. Chem. Commun. pp. 196-198.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Siemens (1990). SHELXTL-Plus User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Wang, W., Ma, C., Zhang, X., Chen, C., Liu, Q., Chen, F., Liao, D. \& Li, L. (2002). Bull. Chem. Soc. Jpn, 75, 2609-2614.

